These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hepatic microsomal drug oxidation and electron transport in newborn infants.
    Author: Aranda JV, MacLeod SM, Renton KW, Eade NR.
    Journal: J Pediatr; 1974 Oct; 85(4):534-42. PubMed ID: 4155438.
    Abstract:
    Many drugs require oxidative metabolism for termination of action and/or for elimination from the body. Many oxidative reactions are catalyzed by hepatic microsomal enzymes. The activities of various drug-metabolizing enzymes, namely, NADPH cytochrome c reductase, NADPH oxidase, aminopyrine-N-demethylase, and analine P-hydroxylase, and the content of cytochrome P-450, were measured in hepatic microsomes obtained from seven newborn infants and four adult patients. The results in the newborn infant show increasing activities of these enzymes (except aminopyrine-N-demethylase) related to advancing age. Good correlation between three components of the hepatic microsomal mixed function oxidase system and aniline p-hydroxylase was established, whereas only NADPH oxidation correlated with aminopyrine N-demethylation. The rate of substrate or drug oxidation and the activities of the components of the microsomal electron transport pathway were lower than comparable values in the adult. The data demonstrate a possible biochemical basis for the transient deficiency in drug metabolism seen in newborn infants.
    [Abstract] [Full Text] [Related] [New Search]