These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Energy-linked reduction of nicotinamide--adenine dinucleotide in membranes derived from normal and various respiratory-deficient mutant strains of Escherichia coli K12. Author: Poole RK, Haddock BA. Journal: Biochem J; 1974 Oct; 144(1):77-85. PubMed ID: 4156832. Abstract: 1. Assay conditions are described for the ATP-dependent, uncoupler-sensitive, energy-linked reduction of NAD(+) by succinate, dl-alpha-glycerophosphate or d-lactate in membranes from aerobically grown Escherichia coli. 2. The reaction may be demonstrated in electron-transport particles (ET particles) from cells grown in glycerol, but not in depleted particles washed in low-ionic-strength buffer, or in ET particles from cells grown in glucose. 3. The latter two classes of particles have low specific activities of ATPase (adenosine triphosphatase), succinate dehydrogenase, dl-alpha-glycerophosphate dehydrogenase and d-lactate dehydrogenase relative to undepleted ET particles from cells grown in glycerol. 4. Reconstitution of energy-linked NAD(+) reduction in particles from cells grown in glucose was done by: (a) addition of the high-speed supernatant fraction from sonicates of the same cells; (b) addition of a protein fraction, precipitated by (NH(4))(2)SO(4) from this supernatant, or (c) addition of an (NH(4))(2)SO(4)-precipitated fraction from the low-ionic-strength wash of particles from cells grown in glycerol. 5. The use of (NH(4))(2)SO(4)-precipitated fractions from ATPase- or succinate dehydrogenase-deficient mutants grown in glycerol in the above reconstitution indicated that failure to demonstrate the reaction in particles from cells grown in glucose was a result of inadequate activities of appropriate dehydrogenases, rather than of ATPase. 6. Energy-linked NAD(+) reduction could be demonstrated in particles from a ubiquinone-deficient mutant only after restoration of NADH oxidase activity by adding ubiquinone-1. 7. The measured rate of the energy-linked reaction in particles from a haem-deficient mutant, however, was not stimulated after the ATP- and haematin-dependent acquisition of functional cytochromes. 8. Results are interpreted as evidence of the ubiquinone-dependent, but cytochrome-independent, nature of the site I region of the respiratory chain in E. coli.[Abstract] [Full Text] [Related] [New Search]