These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neurobiology of Polyorchis. II. Structure of effector systems.
    Author: Spencer AN.
    Journal: J Neurobiol; 1979 Mar; 10(2):95-117. PubMed ID: 41887.
    Abstract:
    The gross and fine morphology of the major effector systems in the anthomedusan, Polyorchis penicillatus, is described and discussed in relation to the known physiological and behavioral properties of these systems. Swimming is controlled by an anastomosing network of giant neurons within the inner nerve ring and radial nerves. Although these neurons may be coupled by gap junctions it is likely that they form a syncytium. The photosensitivity of the "giants" is attributed to reflexive membranes within the cytoplasm. Giant neurons act as both the pre- and postsynaptic cell when forming synapses with other neurons of the inner nerve ring. Neuromuscular synapses between "giants" and the striated swimming muscle are found around the margin and along the radii. Swimming muscle cells are connected laterally by gap junctions and end-to-end by desmosomes which are sometimes elaborated with extra-thick filaments. Unstriated sphincter and radial muscles, the major muscles associated with crumpling, are both greatly folded over mesogloeal ridges and have processes that cross the mesogloea to contact the ring and radial canals, respectively. Synapses or other sites that might be responsible for exciting these muscles during crumpling have not been found. The ability of the endodermal lamella and canals to propagate action potentials can be accounted for by the numerous gap junctions that are seen in these tissues. The precise location where excitation is transferred to the nervous system to initiate crumpling is not known but epithelial bridges crossing the mesogloea are likely routes. Synapses between neurons originating in the outer nerve ring and tentacle longitudinal muscle can account for the control of tentacle length. Neurons of the outer nerve ring also synapse onto velar, radial fibers and the sphincter muscle. The inner and outer nerve rings have nervous connections. The organisation of the outer nerve ring and the arrangement of nerves within the endodermal plexus is described. A diagram showing the major connections and interactions of components of the effector systems is presented.
    [Abstract] [Full Text] [Related] [New Search]