These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glucose transport in Brucella abortus.
    Author: Rest RF, Robertson DC.
    Journal: J Bacteriol; 1974 Apr; 118(1):250-8. PubMed ID: 4206873.
    Abstract:
    Brucella abortus British strain 19 transported glucose with an apparent K(m) of 0.16 mM and an apparent V(max) of 250 nmol per min per mg of N. The only common glucose analogue transported was 2-deoxyglucose (2-DOG), with an apparent K(i) of 0.73 mM. Alpha- or beta-methyl glucosides and 3-O-methylglucose were not transported. Transport was linear for 70 to 90 s, depending on the concentration of substrate used. 2-Deoxyglucose was transported as the free sugar and was not further metabolized once inside the cell. There was no glucose phosphoenolpyruvate phosphotransferase system (PEP-PTS) present, and there were no inhibitors present in Brucella cell-free extract that inhibited the Escherichia coli glucose PEP-PTS. N-Ethylmaleimide (NEM) and p-chloromercuribenzoate (pCMB) completely inhibited transport of glucose and 2-DOG. Glutathione, dithiothreitol, and beta-mercaptoethanol reversed the effects of pCMB but not of NEM. A pH optimum of 7.2 and a temperature optimum of 37 to 45 C were observed for both K(m) and V(max). The glucose transport system appeared to be constitutive for glucose transport in cells grown on fructose, galactose, erythritol, or glucose. The electron transfer inhibitors carbonyl cyanide, m-chlorophenylhydrazone, NaN(3), 2,4-dinitrophenol, and KCN inhibited 2-DOG transport to a greater extent than did the metabolic energy inhibitors NaAsO(4), iodoacetate, KF, and 2-heptyl-4-hydroxyquinoline-N-oxide. Dicyclohexylcarbodiimide, an inhibitor of membrane-bound adenosine triphosphatases, inhibited transport by 100%.
    [Abstract] [Full Text] [Related] [New Search]