These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Coupling of NaHCO3 and NaCl reabsorption in dog kidneys during changes in plasma PCO2. Author: Mathisen O, Monclair T, Raeder M, Kiil F. Journal: Am J Physiol; 1979 Mar; 236(3):F232-9. PubMed ID: 426065. Abstract: To study the relationship between proximal tubular reabsorption of bicarbonate, sodium, and chloride, the effects of changes in plasma PCO2 were examined in anesthetized dogs. Distal tubular reabsorption was inhibited by ethacrynic acid; plasma bicarbonate concentration was kept constant at 33.4 +/- 0.3 mM; glomerular filtration rate (GFR) was varied over a wide range to examine glomerulotubular balance (constant fractional reabsorption). Hypercapnia (PCO2, 112.0 +/- 2.5 mmHg) increased bicarbonate reabsorption by about 30%, and hypocapnia (PCO2, 19.8 +/- 0.6 mmHg) decreased reabsorption of bicarbonate by more than 50% and altered reabsorption of sodium, chloride, and bicarbonate in the molar ratios 2.7:1.6:1, respectively. During hypercapnia the range of glomerulotubular balance was extended to a GFR 125% of control. During hypocapnia glomerulotubular balance was present only at GFR below 50% of control; reabsorption of bicarbonate sodium, and chloride was constant at GFR exceeding 50% of control. During metabolic acidosis hypercapnia had no significant effect on reabsorption of bicarbonate, sodium, and chloride. These observations support the hypothesis that bicarbonate reabsorption is the main driving force for osmotic reabsorption of water and NaCl in the proximal tubules.[Abstract] [Full Text] [Related] [New Search]