These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: An experimental investigation into the possible origin of pancreatic islet cells from rhombencephalic neurectoderm. Author: Andrew A, Kramer B. Journal: J Embryol Exp Morphol; 1979 Aug; 52():23-38. PubMed ID: 42665. Abstract: To determine whether or not any pancreatic islet cell type arises from rhombencephalic levels of neurectoderm, lengths of presumptive rhombencephalon (containing potential neural crest) of Black Australorp chick embryos at 6- to 9-somite stages were replaced isotopically and isochronically by neural tube of Japanese quail embryos. Some transplants included mesencephalic regions. In some cases various levels of the rhombencephalon were deleted and not replaced. The quail nuclear marker was detected in cranial ganglia in operated embryos sacrificed at 3 3/4 days of incubation and in enteric ganglia and cells accompanying some pancreatic nerves, in embryos killed at 7 days of incubation. This provided evidence of normal migration of crest cells from the grafts. Dopa was administered to the younger embryos, which were submitted to the formaldehyde-induced fluorescence procedure to demonstrate APUD (Amine Precursor Uptake and Decarboxylation) cells. No pancreatic APUD cells exhibited the quail nuclear marker. In 9- to 11-day embryos, A and B cells were identified by specific light and electron microscopic features. None showed the quail marker. The marker was also absent from those D cells seen and from cells of an as yet unidentified type, but not enough of these were found to warrant a conclusion. All islet cell types were found in embryos from which various levels of the rhombencephalon had been deleted. It is concluded that at least A and B islet cells are not derived from the rhombencephalic neurectoderm and probably not from mesencephalic levels. Their most likely origin remains the endoderm, which was the accepted source until recently.[Abstract] [Full Text] [Related] [New Search]