These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of thiourea on microsomal oxidation of alcohols and associated microsomal functions.
    Author: Cederbaum AI, Dicker E, Rubin E, Cohen G.
    Journal: Biochemistry; 1979 Apr 03; 18(7):1187-91. PubMed ID: 427108.
    Abstract:
    Thiourea and diethylthiourea, two compounds which react with hydroxyl radicals, inhibited NADPH-dependent microsomal oxidation of ethanol and 1-butanol. Inhibition by both compounds was more effective in the presence of the catalase inhibitor, azide. Inhibition by thiourea was noncompetitive with respect to ethanol in the absence of azide but was competitive in the presence of azide. Urea, a compound which does not react with hydroxyl radicals or H2O2, was without effect. Thiourea had no effect on NADH- and NADH-cytochrome c reductase, NADPH oxidase, and NADH- and NADPH-dependent oxygen uptake. Thiourea inhibited the activities of aniline hydroxylase and aminopyrine demethylase. Thiourea, but no other hydroxyl radical scavengers, e.g., dimethyl sulfoxide, mannitol, and benzoate, reacted directly with H202 and decreased H2O2 accumulation in the presence of azide. Therefore the actions of thiourea are complex because it can react with both hydroxyl radicals and H2O2. Differences between the actions of thiourea and those previously reported for dimethyl sulfoxide, mannitol, and benzoate, e.g., effects on drug metabolism, effectiveness of inhibition in the absence of azide, or kinetics of the inhibition, probably reflect the fact that thiourea reacts directly with H2O2 whereas the other agents do not. The current results remain consistent with the concept that microsomal oxidation of alcohols involves interactions of the alcohols with hydroxyl radicals generated from microsomal electron transfer.
    [Abstract] [Full Text] [Related] [New Search]