These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Superinduction of phenylalanine ammonia-lyase in gherkin hypocotyls caused by the inhibitor, L-alpha-aminooxy-beta-phenylpropionic acid. Author: Amrhein N, Gerhardt J. Journal: Biochim Biophys Acta; 1979 Apr 03; 583(4):434-42. PubMed ID: 427220. Abstract: The extractable activity of L-phenylalanine ammonia-lyase (EC 4.3.1.5) and the concentration of sugar esters of p-coumaric and ferulic acids in the hypocotyls of etiolated gherkin seedlings increase upon irradiation with white light. Treatment of intact seedlings with the phenylalanine ammonia-lyase inhibitors alpha-aminooxyacetic acid and L-alpha-aminooxy-beta-phenylpropionic acid during illumination causes enhanced formation of the lyase and reduces the accumulation of hydroxycinnamic acids. Enzyme activity in excised hypocotyl segments floating on buffer increases in the dark as well as in the light, while hydroxycinnamic acids accumulate only in the light. Phenylalanine ammonia-lyase formation in the segments is inhibited by cinnamic acid and, to a lesser extent, p-coumaric acid, while it is slightly enhanced by caffeic acid and is not affected by ferulic acid. Aminooxyphenylpropionate dramatically promotes phenylalanine ammonia-lyase formation in the segments in darkness and light prevents the accumulation of hydroxycinnamic acids in the light. Aminooxyphenylpropionate does not, however, affect the time course of apparent lyase formation and decay. Cinnamic acid, the product of the lyase reaction, antagonizes the effect of aminooxyphenylpropionate. It is proposed that the reaction product(s) are involved to some extent in the regulation of the pool of active lyase in the hypocotyl tissue.[Abstract] [Full Text] [Related] [New Search]