These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phospholipid metabolism during bacterial growth.
    Author: White DC, Tucker AN.
    Journal: J Lipid Res; 1969 Mar; 10(2):220-33. PubMed ID: 4305713.
    Abstract:
    Haemophilus parainfluenzae incorporates glycerol and phosphate into the membrane phospholipids without lag during logarithmic growth. In phosphatidyl glycerol (PG), the phosphate and unacylated glycerol moieties turn over and incorporate radioactivity much more rapidly than does the diacylated glycerol. At least half the radioactivity is lost from the phosphate and unacylated glycerol in about 1 doubling. The total fatty acids turn over slightly faster than the diacyl glycerol. In phosphatidyl ethanolamine (PE), which is the major lipid of the bacterium, ethanolamine and phosphate turn over and incorporate radioactivity at least half as fast as the phosphate in PG. The glycerol of PE did not turn over in 4 bacterial doublings. In phosphatidic acid the glycerol turns over at one-third the rate of phosphate turnover. By means of a modified method for the quantitative recovery of 1,3-glycerol diphosphate from cardiolipin, the phosphates and middle glycerol of cardiolipin were shown to turn over more rapidly than the acylated glycerols during bacterial growth. There is no randomization of the radioactivity in the 1- and 3-positions of the glycerol in the course of 1 doubling. The fatty acids of PG turn over faster than those in PE. In both lipids the 2-fatty acids turn over much faster than the 1-fatty acids. At both positions the individual fatty acids have their own rates of turnover. The distribution of fatty acids between the 1- and 2-positions is the same as in other organisms, with more monoenoic and long-chain fatty acids at the 2-position. The different rates of turnover and incorporation of radioactivity into different parts of the lipids suggest that exchange reactions may be important to phospholipid metabolism.
    [Abstract] [Full Text] [Related] [New Search]