These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Proteins of vesicular stomatitis virus: kinetics and cellular sites of synthesis. Author: Wagner RR, Snyder RM, Yamazaki S. Journal: J Virol; 1970 May; 5(5):548-58. PubMed ID: 4315954. Abstract: FIVE VIRAL PEPTIDES SYNTHESIZED IN L CELLS INFECTED WITH VESICULAR STOMATITIS (VS) VIRUS WERE IDENTIFIED BY POLYACRYLAMIDE GEL ELECTROPHORESIS AND DESIGNATED AS FOLLOWS: nucleoprotein N, a membrane glycoprotein G, a membrane surface protein S, and two nonstructural proteins NS1 and NS2. A slowly migrating minor structural protein L also present in infected cells is probably an aggregate. Incorporation of (3)H-amino acids into each viral protein could be detected by the 2nd hr after infection and even earlier for protein N which is synthesized in the greatest amount. There was no evidence of regulation of viral protein synthesis at the transcriptive level; nonstructural and structural proteins were synthesized throughout the cycle of infection. Short pulses of (3)H-amino acids revealed no uncleaved precursor peptides that could be chased into structural peptides. Proteins N and S were chased into released virions but protein G was apparently incorporated into virions as it was being synthesized. VS viral proteins of infected cells were released by mechanically disrupting cytoplasmic membrane by nitrogen decompression and fractionated by high-speed centrifugation. Protein NS1 was present in the nonsedimentable cytoplasmic fraction throughout the cycle of infection. The nucleoprotein N was recovered primarily from the nonsedimentable fraction early in infection but aggregated into a sedimentable component, presumably the nucleocapsid, later in infection. Proteins G and S were always present in the sedimentable fraction of mechanically disrupted infected cells, presumably in association with plasma membrane. Exposure of infected cells to the membrane-dissolving agent, digitonin, resulted in solubilization of most of protein G and all of protein S but not of protein N. These experiments are compatible with the hypothesis that VS viral proteins G and S are synthesized at and inserted into plasma membrane which envelopes a nucleocapsid core to form the VS virion.[Abstract] [Full Text] [Related] [New Search]