These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Neurohypophyseal hormone-responsive adenylate cyclase from mammalian kidney. Author: Dousa T, Hechter O, Schwartz IL, Walter R. Journal: Proc Natl Acad Sci U S A; 1971 Aug; 68(8):1693-7. PubMed ID: 4331557. Abstract: The investigation was undertaken to evaluate the direct stimulatory effects of neurohypophyseal hormones upon adenylate cyclase activity in a cell-free, particulate fraction derived from the kidney medulla of various mammalian species. The relative affinity of neurohypophyseal hormones for the receptor component of the adenylate cyclase system (as defined by the concentration of hormone required for half-maximal stimulation) had the order [8-arginine]-vasopressin > [8-lysine]-vasopressin >> oxytocin (AVP > LVP >> OT) for rat, mouse, rabbit, and ox; in the pig, the order was LVP > AVP >> OT. The relative affinities of the three hormones in rat and pig cyclase systems were found to correspond with the relative antidiuretic potencies of these hormones in the intact rat and pig. These findings show that the renal receptor for neurohypophyseal hormones in a particular species exhibits the highest affinity for the specific antidiuretic hormone that occurs naturally in that species. Some of the molecular requirements for the stimulation of rabbit adenylate cyclase were defined by studies of several neurohypophyseal analogs possessing structural changes in positions 1, 2, 3, 4, 5, 8, and 9. This investigation introduces the particulate preparation of renal medullary adenylate cyclase as a tool for the analysis of neurohypophyseal hormone-receptor interactions and indicates that this preparation can be adapted to serve as an in vitro bioassay system for antidiuretic hormonal activity.[Abstract] [Full Text] [Related] [New Search]