These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of the carotid rete on brain temperature in cats exposed to hot environments.
    Author: Baker MA.
    Journal: J Physiol; 1972 Feb; 220(3):711-28. PubMed ID: 4335731.
    Abstract:
    1. Thermocouples were chronically implanted in various intracranial and extracranial structures in adult cats. Temperature of arterial blood on the proximal and distal sides of the carotid rete was determined by measuring temperature in the aortic arch and at the anterior cerebral arteries. Temperatures of brain stem regions supplied by the carotid rete and by the vertebral-basilar system were determined by measuring temperature in the anterior hypothalamus and the caudal medulla. Nasal mucosal temperature was measured with a thermocouple implanted in the nasal cavity.2. In a cool environment (25 degrees C), the temperature of anterior cerebral arterial blood was lower than aortic arterial temperature. Anterior cerebral temperature showed shifts which were not present in central (aortic) arterial blood and which were clearly associated with changes in heat loss from the nasal mucosa and with the behaviour of the animal. When the cats were relaxed or in e.e.g. slow-wave sleep, the nasal mucosal temperature was high and the temperature at the anterior cerebral arteries was as much as 0.30 degrees C less than aortic temperature. During behavioural arousal and paradoxical sleep, the nasal mucosal temperature fell and the anterior cerebral arterial temperature rose toward central arterial temperature. Shifts in hypothalamic temperature followed the changes in anterior cerebral arterial temperature. Medullary temperature was higher than aortic temperature and showed shifts which suggested that blood from the rostral circle of Willis mixed with vertebral blood in the basilar artery.3. When the ambient temperature was raised to 40-45 degrees C the cooling of cerebral arterial blood and brain increased as the rate of thermal panting increased. Respiratory rate increased tenfold and aortic temperature rose by 2.0-2.5 degrees C. Anterior cerebral arterial temperature fell below aortic temperature by as much as 1 degrees C, hypothalamic temperature dropping in parallel with cerebral arterial temperature. Medullary temperature cooled below aortic temperature during heat exposure, but the temperature drop in the medulla was not as high as in the rostral brain stem.4. Blowing air into the nasal cavity of anaesthetized cats produced a large, rapid temperature drop at the anterior cerebral arteries and in the hypothalamus, with little effect on central arterial temperature. The same experiments in a dead animal cooled the brain after a longer period of time, suggesting that an active process is involved in the brain cooling observed in living animals.5. It is concluded that the cooling of the rostral cerebral arterial blood and brain which occurs in cats in a cool environment and is accelerated during thermal panting, is a result of countercurrent heat exchange between arterial blood in the carotid rete and venous blood draining the evaporative surfaces of the upper respiratory passages. Such direct brain cooling during thermal panting has now been demonstrated in the cat, the sheep and the gazelle, and probably explains the high heat tolerance of the carnivores and hoofed mammals in which a rete is present.
    [Abstract] [Full Text] [Related] [New Search]