These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Studies of reversible and irreversible interactions of an alkylating agonist with Torpedo californica acetylcholine receptor in membrane-bound and purified states.
    Author: Moore HP, Raftery MA.
    Journal: Biochemistry; 1979 May 15; 18(10):1862-7. PubMed ID: 435449.
    Abstract:
    The interaction of a cholinergic depolarizing agent, bromoacetylcholine, with acetylcholine receptor (AcChR) enriched membrane fragments and Triton-solubilized, purified AcChR from Torpedo californica has been studied. The reagent bound to membrane-bound AcChR reversibly with an apparent dissociation constant of 16 +/- 1 nM at equilibrium. This 600-fold higher affinity for the receptor than found from physiological studies [Kact congruent to 10 micrometers; Karlin, A. (1973) Fed. Proc. Fed. Am. Soc. Exp. Biol. 32, 1847--1853] can be attributed to a ligand-induced affinity change of the membrane-bound receptor upon preincubation with bromoacetylcholine. At equilibrium [3H]bromoacetylcholine, like acetylcholine, bound to half the number of alpha-bungarotoxin sites present in the preparation without apparent positive cooperativity, and this binding was competitively inhibited by acetylcholine. In the presence of dithiothreitol, [3H]bromoacetylcholine irreversibly alkylated both membrane-bound and solubilized, purified acetylcholine receptor, with a stoichiometry identical with that for reversible binding. NaDodSO4-polyacrylamide gel electrophoresis of the labeled acetylcholine receptor showed that only the 40 000-dalton subunit contained the label. From these results it is concluded that the 40 000-dalton subunit represents a major component of the agonist binding site of the receptor.
    [Abstract] [Full Text] [Related] [New Search]