These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis of 1-palmitoyl and 1-stearoyl phosphatidylcholines from mixtures of acyl acceptors via acyl-CoA:1-acyl-sn-glycero-3-phosphorylcholine acyltransferase in liver microsomes. Author: Holub BJ, MacNaughton JA, Piekarski J. Journal: Biochim Biophys Acta; 1979 Mar 29; 572(3):413-22. PubMed ID: 435502. Abstract: The fatty acid selectivity of the acyl-CoA:1-acyl-sn-glycero-3-phosphorylcholine acyltransferase in rat liver microsomes was studied using a mixture of the [1-(3)H]palmitoyl plus [1-(14C)stearoyl molecular species of 1-acylglyceryl-phosphorylcholine. At a 1-acyl-sn-glycero-3-phosphorylcholine concentration of 0.16 mM, the enzyme exhibited a selectivity of 3.5-fold for the 1-palmitoyl over the 1-stearoyl species of the acyl acceptor and reaction velocities with linoleoyl- and arachidonoyl-CoA were 38--47% greater than with oleoyl-CoA. Lowering the acceptor concentration to 0.016 mM gave reaction rates with the polyenoic thiolesters which were 174--187% greater than with oleoyl-CoA and the 1-palmitoyl-sn-glycero-3-phosphorylcholine was preferred by 2.2, 1.6, and 1.6-fold with oleoyl-, linoleoyl- and arachidonoyl-CoA, respectively. The results support the potential importance of the fatty acid selectivities of the acyl-CoA:1-acyl-sn-glycero-3-phosphorylcholine acyltransferase towards both acyl acceptor and donor in regulating the phosphatidylcholine species formed by the reaction in vivo.[Abstract] [Full Text] [Related] [New Search]