These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The copolymeric structure of pig skin dermatan sulphate. Isolation and characterization of L-idurono-sulphate-containing oligosaccharides from copolymeric chains.
    Author: Fransson LA, Cöster L, Havasmark B, Malmström A, Sjöberg I.
    Journal: Biochem J; 1974 Nov; 143(2):379-89. PubMed ID: 4376944.
    Abstract:
    Dermatan sulphate was degraded by testicular hyaluronidase and an oversulphated fraction was isolated by ion-exchange chromatography. This preparation, which contained fairly long segments derived from the non-reducing terminal portion of the molecule, was subjected to periodate oxidation under acidic conditions. The oxidized iduronic acid residues were cleaved by reduction-hydrolysis (Smith-degradation) (Fransson & Carlstedt, 1974) or by alkaline elimination. The oligosaccharides so obtained contained both GlcUA (glucuronic acid) and IdUA-SO(4) (sulphated iduronic acid) residues. Copolymeric oligosaccharides obtained after alkaline elimination were cleaved by chondroitinase-AC into disaccharide and higher oligosaccharides. Since the corresponding oligosaccharides obtained by Smith-degradation were unaffected by this enzyme, it was concluded that the carbohydrate sequences were GalNAc-(IdUA-GalNAc)(n)-GlcUA-GalNAc. The iduronic acid-containing sequences were resistant to digestion with chondroitinase-ABC. It was demonstrated that the presence of unsulphated N-acetylgalactosamine residues in these sequences could be responsible for the observed effect. This information was obtained in an indirect way. Chemically desulphated dermatan sulphate was found to be a poor substrate for the chondroitinase-ABC enzyme. Moreover, digestion with chondroitinase-ABC of chondroitinase-AC-degraded dermatan sulphate released periodate-resistant iduronic acid-containing oligosaccharides. It is concluded that copolymeric sequences of the following structure are present in pig skin dermatan sulphate: [Formula: see text] N-acetylgalactosamine moieties surrounding IdUA-SO(4) residues are unsulphated to a large extent.
    [Abstract] [Full Text] [Related] [New Search]