These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mean alveolar gases and alveolar-arterial gradients in pulmonary patients.
    Author: Luft UC, Loeppky JA, Mostyn EM.
    Journal: J Appl Physiol Respir Environ Exerc Physiol; 1979 Mar; 46(3):534-40. PubMed ID: 438024.
    Abstract:
    In view of uncertainties about the best way to estimate mean alveolar gases in patients with ventilation-perfusion inequalities, three different methods were evaluated on 54 patients. 1) O2 and CO2 were recorded by mass spectrometer on an O2 (x)-CO2 (y) diagram. The coordinates at the intersect of the expiratory record with the mixed expired R line (RE) ives the mean alveolar values (PAo2 and PAco2. 2)pa'co2 was calculated with the Bohr equation using a predicted anatomic dead space and PA'o2 was derived with the alveolar equation. 3) End-tidal (ET) P02 were averaged over 1 min at rest in steady state. Mean RET calculated from 3 was identical with RE. Mean values for PAco2, PA'CO2. and PETco2 differed by less that 1 Torr, but the variance was least with the end-tidal method. There was a highly significant correlation between delta aAPco2 using PETco2 and VD/VT, better than with either of the other methods. The end-tidal measurement appears to give the best approximation of mean alveolar gas in pulmonary patients.
    [Abstract] [Full Text] [Related] [New Search]