These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inducible heme oxygenase in the kidney: a model for the homeostatic control of hemoglobin catabolism. Author: Pimstone NR, Engel P, Tenhunen R, Seitz PT, Marver HS, Schmid R. Journal: J Clin Invest; 1971 Oct; 50(10):2042-50. PubMed ID: 4398936. Abstract: We have recently identified and characterized NADPH-dependent microsomal heme oxygenase as the major enzymatic mechanism for the conversion of hemoglobin-heme to bilirubin-IXalpha in vivo. Enzyme activity is highest in tissues normally involved in red cell breakdown, that is, spleen, liver, and bone marrow, but it usually is negligible in the kidney. However, renal heme oxygenase activity may be transiently increased 30- to 100-fold following hemoglobinemia that exceeded the plasma haptoglobin-binding capacity and consequently resulted in hemoglobinuria. Maximal stimulation of enzyme activity in rats is reached 6-16 hr following a single intravenous injection of 30 mg of hemoglobin per 100 g body weight; activity returns to basal levels after about 48 hr. At peak level, total enzyme activity in the kidneys exceeds that of the spleen or liver. Cyclohexamide, puromycin, or actinomycin D, given just before, or within a few hours after, a single intravenous injection of hemoglobin minimizes or prevents the rise in renal enzyme activity; this suggests that the increase in enzyme activity is dependent on continued synthesis of ribonucleic acid and protein. The apparent biological half-life of renal heme oxygenase is about 6 hr. These observations indicate that functional adaptation of renal heme oxygenase activity reflects enzyme induction either directly or indirectly by the substrate, hemoglobin. Filtered rather than plasma hemoglobin appears to regulate renal heme oxygenase activity. Thus, stabilization of plasma hemoglobin in its tetrameric form with bis (N-maleimidomethyl) ether, which diminishes its glomerular filtration and retards it plasma clearance, results in reduced enzyme stimulation in the kidney, but enhances its activity in the liver. These findings suggest that the enzyme is localized in the tubular epithelial cells rather than in the glomeruli and is activated by luminal hemoglobin. Direct support for this concept was obtained by the demonstration of heme oxygenase activity in renal tubules isolated from rabbits that had been injected with hemoglobin.[Abstract] [Full Text] [Related] [New Search]