These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Spectroscopic studies of flavoproteins and non-haem iron proteins of submitochondrial particles of Torulopsis utilis modified by iron- and sulphate-limited growth in continuous culture.
    Author: Ragan CI, Garland PB.
    Journal: Biochem J; 1971 Aug; 124(1):171-87. PubMed ID: 4399518.
    Abstract:
    1. A spectroscopic resolution has been made of the components contributing to the ;iron-flavoprotein' trough extending from 450 to 520nm in the reduced-minus-oxidized difference spectrum of submitochondrial particles of Torulopsis utilis. 2. Seven components were identified other than cytochrome b, ubiquinone and succinate dehydrogenase. On the basis of the effects of iron- and sulphate-limited growth of cells on their subsequently derived electron-transport particles, and also by consideration of analytical measurements of the concentration of FMN, FAD, non-haem iron and acid-labile sulphide in the electron-transport particles in relation to the magnitude of the spectroscopic changes, it was possible to identify five of these components as follows: species 1a, the flavin of NADH dehydrogenase ferroflavoprotein; species 1b, the iron-sulphur component of NADH dehydrogenase ferroflavoprotein; species 1', the flavin of an NADPH dehydrogenase; species 2, an iron-sulphur or ferroflavoprotein component; species 3, the flavin of l-3-glycerophosphate dehydrogenase. Two additional components were a fluorescent flavoprotein, probably lipoamide dehydrogenase, and a b-type cytochrome reducible by NADH or NADPH but not reoxidizable by the respiratory chain. 3. Species 1b and 2 were undetectable in electron-transport particles from iron- or sulphate-limited cells, but could be recovered in vivo under non-growing conditions. 4. The recovery in vivo of species 2 but not species 1b was inhibited by cycloheximide. 5. The recovery of species 1b correlates with the recovery of site 1 conservation. 6. The recovery of species 1b with species 2 correlates with the recovery of piericidin A sensitivity. 7. Evidence is presented for an NADPH dehydrogenase distinct from NADH dehydrogenase. The oxidation of NADH and NADPH by the respiratory chain is sensitive to piericidin A, and an iron-sulphur protein common to both pathways (species 2) is suggested as the piericidin A-sensitive component. 8. The approximate E'(0) (pH7.0) values of species 1 (a and b, low potential) and species 2 (high potential) indicate that site 1 energy conservation occurs between the levels of species 1 (a and b) and species 2.
    [Abstract] [Full Text] [Related] [New Search]