These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The hexose-proton cotransport system of chlorella. pH-dependent change in Km values and translocation constants of the uptake system. Author: Komor E, Tanner W. Journal: J Gen Physiol; 1974 Nov; 64(5):568-81. PubMed ID: 4443792. Abstract: The proton concentration in the medium affects the maximal velocity of sugar uptake with a K(m) of 0.3 mM (high affinity uptake). By decreasing the proton concentration a decrease in high affinity sugar uptake is observed, in parallel the activity of a low affinity uptake system (K(m) of 50 mM) rises. Both systems add up to 100%. The existence of the carrier in two conformational states (protonated and unprotonated) has been proposed therefore, the protonated form with high affinity to 6-deoxyglucose, the unprotonated form with low affinity. A plot of extrapolated V(max) values at low substrate concentration versus proton concentration results in a K(m) for protons of 0.14 microM, i.e. half-maximal protonation of the carrier is achieved at pH 6.85. The stoichiometry of protons cotransported per 6-deoxyglucose is close to 1 at pH 6.0-6.5. At higher pH values the stoichiometry continuously decreases; at pH 8.0 only one proton is cotransported per four molecules of sugar. Whereas the translocation of the protonated carrier is strictly dependent on sugar this coupling is less strict for the unprotonated form. Therefore at alkaline pH a considerable net efflux of accumulated sugar can occur. The dependence of sugar accumulation on pH has been measured. The decrease in accumulation with higher pH values can quantitatively be explained by the decrease in the amount of protonated carrier. The properties of the unprotonated carrier resemble strikingly the properties of carrier at the inner side of the membrane. The inside pH of Chlorella was measured with the weak acid 5,5-dimethyl-2, 4-oxazolidinedion (DMO). At an outside pH of 6.5 the internal pH was found to be 7.2. To explain the extent of sugar accumulation it has to be assumed that the membrane potential also contributes to active sugar transport in this alga.[Abstract] [Full Text] [Related] [New Search]