These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The metabolism of macromolecules during the differentiation of Myxamoebae of the cellular slime mould Dictyostelium discoideum containing different amounts of glycogen. Author: Hames BD, Ashworth JM. Journal: Biochem J; 1974 Aug; 142(2):301-15. PubMed ID: 4474880. Abstract: 1. Methods of obtaining myxamoebae of Dictyostelium discoideum strain Ax-2 (ATCC 24397) with glycogen contents in the range 0.05-5mg of glycogen/10(8) cells are described. The changes in cellular glycogen, protein and RNA content during the differentiation of such myxamoebae were determined. 2. Myxamoebal glycogen is not conserved during differentiation and gluconeogenesis may occur even in cells that contain a large amount of glycogen initially. 3. There is a marked net loss of cellular protein and RNA during differentiation and associated with this there are also marked decreases in the sizes of the intracellular pools of amino acids, acid-soluble proteins and pentose-containing materials. 4. During the early stages of development some protein and pentose(s) are excreted, but this cannot account for the decreased cellular content of protein and RNA. 5. There is a linear rate of production of NH(3) during development, and oxidation appears to be the fate of the major portion of the degraded protein and RNA. 6. However, provision of an alternative metabolizable energy source (glycogen) has little effect on the rate or extent of protein or RNA breakdown or on the changes in the sizes of the intracellular pools of amino acids, acid-soluble proteins and pentose-containing materials. 7. It is concluded that during development there is a requirement for the destruction of specific RNA and protein molecules for reasons other than the provision of oxidizable substrates. 8. The kinetic model of Wright et al. (1968) is discussed in relation to these changes in macromolecular content.[Abstract] [Full Text] [Related] [New Search]