These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional identity of catalytic subunits of acetylcholinesterase. Author: Barnett P, Rosenberry TL. Journal: Biochim Biophys Acta; 1979 Mar 16; 567(1):154-60. PubMed ID: 454619. Abstract: 11 S acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7) from the electric eel Electrophorus electricus essentially consists of four catalytic subunits which appear to be identical structurally but to be assembled with slight asymmetry. During isolation and storage of the enzyme, proteolysis cleaves a portion of the subunits into major fragments containing the active site and minor fragments containing no active sites without change in the enzyme molecular weight. A previous report (Gentinetta, R. and Brodbeck, U. (1976) Biochim. Biophys. Acta 438 437--448) indicated that the intact and the fragmented subunits reacted with diisopropylfluorophosphate at different rates and that the reaction rate in the presence of excess phosphorylating agent was not strictly first order. Those findings could not be reproduced in this report. Intact and fragmented subunits were observed to react at the same rate with diisopropylfluorophosphate. In addition, the overall reaction kinetics both of 11 S and 18 S plus 14 S acetylcholinesterase were found to be strictly first order in the presence of an excess of diisopropylfluorophosphate throughout the course of reaction. These results are consistent with several previous reports that only one type of active site can be detected in acetylcholinesterase. The proteolysis which fragments a portion of the catalytic subunit has no apparent effect on the catalytic properties of the enzyme.[Abstract] [Full Text] [Related] [New Search]