These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Importance of facilitated diffusion for effective utilization of glycerol by Escherichia coli.
    Author: Richey DP, Lin EC.
    Journal: J Bacteriol; 1972 Nov; 112(2):784-90. PubMed ID: 4563976.
    Abstract:
    Wild-type Escherichia coli possesses an inducible permeation system which catalyzes facilitated diffusion of glycerol into the cell. A spectrophotometric method can be used to assess the presence of this mechanism. The structural gene for the facilitator (glpF) and the structural gene for glycerol kinase (glpK) apparently belong to a single operon. The glpF(+) allele permits effective glycerol utilization by the cells, and, at millimolar concentrations of glycerol, cells carrying the glpF(+) allele grow much faster than glpF genotypes. Although the glycerol-scavenging power of the cell depends both on the facilitated entry of the substrate and its subsequent trapping by an adenosine triphosphate-dependent phosphorylation, the two gene products, the facilitator and kinase, function independently. Wild-type Shigella flexneri appears to be glpK(+) but glpF. This organism grows slowly in media at low concentrations of glycerol. When the glpF(+) and glpK(+) alleles of E. coli are inserted into the S. flexneri genome by transduction, the hybrid strain grows rapidly in low glycerol medium. Vice versa, when the glpF and glpK(+) alleles of S. flexneri are incorporated into E. coli, the hybrid strain grows slowly in low glycerol medium.
    [Abstract] [Full Text] [Related] [New Search]