These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Modulation of behavioral inhibition in appetitive extinction following manipulation of adrenal steroids in rats: implications for involvement of the hippocampus. Author: Micco DJ, McEwen BS, Shein W. Journal: J Comp Physiol Psychol; 1979 Apr; 93(2):323-9. PubMed ID: 457953. Abstract: Corticosterone, the principal glucocorticoid in the rat, binds selectively to the CA1 pyramidal neurons of the hippocampus where the hormone has been demonstrated to exert a moderate chronic suppression of spontaneous activity. In the first experiment of the current study, the functional behavioral significance of this hormone--brain interaction was investigated in the extinction of an appetitive runway response in normal rats and those with lesions of the hippocampus. During extinction, half of the animals in each group were given daily subcutaneous injections of corticosterone. Whie the classical retardation effect of hippocampal lesions on appetitive extinction was replicated, hormone treatment was without effect in normal or hippocampally damaged subjects. The absence of a hormone effect in normals was primarily attributed to a saturated limited-binding system operating in the normal animal. Experiment 2 tested this notion, repeating the first experiment, with adrenal-ectomized (ADX), ADX + corticosterone replacement, and normal groups of animals. Adrenalectomy produced a striking facilitation of extinction which was speculated to be the result of a hyperactive inhibitory neural organ free from an inhibitory endocrine feedback. Corticosterone treatment normalized the progress of extinction in ADX animals, providing support for the afore-mentioned speculation. In the normal animal, it appears that a stress-induced surge in hormone level interacts with a limited-capacity neural binding to produce a transient dynamic range of behavioral disinhibition, perhaps promoting persistence during initial stages of frustrative nonreward in moderate stress tasks.[Abstract] [Full Text] [Related] [New Search]