These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of ammonium, L-glutamate, and L-glutamine on nitrogen catabolism in Aspergillus nidulans. Author: Hynes MJ. Journal: J Bacteriol; 1974 Dec; 120(3):1116-23. PubMed ID: 4612004. Abstract: During growth of Aspergillus nidulans in medium containing ammonium the specific activities of most enzymes involved in catabolism of nitrogen sources are low (ammonium repression). The gdhA10 lesion, which results in loss of nicotinamide adenine dinucleotide phosphate-linked glutamate dehydrogenase activity, has been shown to lead to partial relief of ammonium repression of three amidase enzymes as well as histidase. The areA102 lesion led to altered levels of these enzymes but did not greatly affect ammonium repression. The double mutant areA102,gdhA10 was almost completely insensitive to ammonium repression of two of the amidase enzymes and histidase. This suggests that an interaction between the areA and gdhA genes in determining responses to ammonium occurs. Growth of mycelium in medium containing l-glutamate has been found to result in lowered levels of all four enzymes, and this occurs in strains insensitive to ammonium repression. Very strong repression in all strains occurred during growth in medium containing l-glutamine. Relief of these repressive effects of glutamate and glutamine was blocked by cycloheximide. Glutamate and glutamine had similar effects on the production of extracellular protease activity, and growth on glutamine led to low levels of urate oxidase. In contrast to the above enzymes, nitrate reductase was insensitive to the effects of glutamine and glutamate, even though this enzyme is very sensitive to ammonium repression. Although other possibilities exist, it is suggested that there may be mechanisms of general control of nitrogen-catabolic enzymes other than ammonium repression.[Abstract] [Full Text] [Related] [New Search]