These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Breath-by-breath variation of FRC: effect on VO2 and VCO2 measured at the mouth. Author: Wessel HU, Stout RL, Bastanier CK, Paul MH. Journal: J Appl Physiol Respir Environ Exerc Physiol; 1979 Jun; 46(6):1122-6. PubMed ID: 468635. Abstract: We examined breath-by-breath (B-B) variations of FRC (delta FRC) and their effect on measured O2 and CO2 gas exchange in 52 2- to 4-min segments of continuous air breathing obtained in 29 patients (age range 6--50 yr). Respiratory frequency ranged from 13 to 43 breaths/min, VE from 6.7 to 22.5 l/min (BTPS), and expired VT from 234 to 1,370 ml (BTPS). Computer analysis was based on the following source data measured at the mouth: inspired (VI) and expired (VE) gas flow, FN2, FO2 and FCO2. The analysis provides B-B evaluation of VI, VE, delta FRC in terms of VN2, and VO2 and VCO2 at the mouth and at the alveolar level, i.e., after correction for delta FRC. Significant B-B variations of FRC were found in all studies. delta FRC ranged from +360 to -360 ml (BTPS). For single respiratory cycles VI - VE is primarily a function of N2 exchange at the mouth (VMN2). VO2 and VCO2, uncorrected for delta FRC, are significantly more dispersed about mean values than the corrected gas uptakes (P less than 0.0005). The data support the view that the assumption of VIN2 = VEN2 is invalid for single respiratory cycles. Determination of breath-by-breath VO2 and VCO2 should therefore, not be based on steady-state gas uptake equations. It requires measurement of both inspired and expired breath volumes and evaluation of N2 gas exchange.[Abstract] [Full Text] [Related] [New Search]