These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The reactivity of functional groups as a probe for investigating the topography of tobacco mosaic virus. The use of mutants with additional lysine residues in the coat protein. Author: Perham RN. Journal: Biochem J; 1973 Jan; 131(1):119-26. PubMed ID: 4722032. Abstract: Several mutants of tobacco mosaic virus that contain additional lysine residues as a result of mutations in the coat protein were investigated. Mutant E66 has a lysine residue replacing asparagine at position 140 when compared with the wild-type vulgare and this lysine residue reacts readily in the intact virus with methyl picolinimidate. Mutant B13a has two new lysine residues in the coat protein, replacing a glutamine at position 9 and an asparagine at position 33, whereas mutant B13b has the single replacement of glutamine by lysine at position 9. The lysine residue at position 9 in mutants B13a and B13b also reacts readily with methyl picolinimidate in the intact virus but the lysine at position 33 in mutant B13a did not react under these conditions. However, when the isolated coat protein from mutant B13a was treated with methyl picolinimidate, the lysine residue at position 33 did become modified, showing that the loss in reactivity of this residue towards the imidoester in the intact virus is a result of the assembly of the protein subunit into the virus structure. These results are compatible with and extend previous studies on the sero-logical properties of mutants of tobacco mosaic virus and illustrate the value of methyl picolinimidate as a reagent for probing the accessibility of amino groups in proteins. When intact tobacco mosaic virus (vulgare) was treated with p-iodobenzenesulphonyl chloride, no reaction with the lysine residues at positions 33 or 68 in the virus subunit could be detected but complete modification of tyrosine-139 was achieved. This result also extends previous studies with other reagents. The usefulness of the differential reactivity of the lysine residues in tobacco mosaic virus and its mutants as a means of attaching heavy-atom labels at chemically defined positions for subsequent X-ray-diffraction analysis and the implications of these experiments for deciphering the folding of the peptide chain in the virus subunit are discussed.[Abstract] [Full Text] [Related] [New Search]