These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of 5-azacytidine on nucleolar RNA and the preribosomal particles in Novikoff hepatoma cells. Author: Weiss JW, Pitot HC. Journal: Biochemistry; 1975 Jan 28; 14(2):316-26. PubMed ID: 47243. Abstract: Examination of nucleolar RNA from cultured Novikoff hepatoma cells treated for 3 hr with 5 x 10-4 M 5-azacytidine shows that significant amounts of analog-substituted 45S RNA are processed to the 32S RNA species, but 28S RNA formation is completely inhibited. Under these conditions of analog treatment 37% of the cytidine residues in the 45S RNA is replaced by 5-azacytidine. During coelectrophoresis of nucleolar RNA from 5-azacytidine-treated and control cells, the analog-substituted 45S RNA and 32S RNA display reduced mobilities compared to the control 45S RNA and 32S RNA. Coelectrophoresis of analog-substituted and control RNA after formaldehyde denaturation shows no differences in electrophoretic mobility between the two RNA samples, suggesting that 5-azacytidine incorporation may alter the secondary structure of the 45S RNA and the 32S RNA. 5-Azacytidine at 5 x 10-4 M severely inhibits protein synthesis in Novikoff cells by 3 hr. After this length of treatment, however, CsCl buoyant density analysis reveals no difference in density of either the 80S or 55S preribosomal ribonucleoprotein particles when compared to normal particles. Also 5-azacytidine treatment does not appear to cause major changes in the polyacrylamide gel electrophoresis patterns of the proteins in the 80S and 55S preribosomal particles. These results together with previous findings suggest that 5-azacytidine's inhibition of rRNA processing is possibly related to its alteration of the structure of the ribosomal precursor RNAs and is not a consequence of a general inhibition of ribosomal protein formation.[Abstract] [Full Text] [Related] [New Search]