These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Thymidylate synthetase. Catalysis of dehalogenation of 5-bromo- and 5-iodo-2'-deoxyuridylate.
    Author: Garrett C, Wataya Y, Santi DV.
    Journal: Biochemistry; 1979 Jun 26; 18(13):2798-804. PubMed ID: 476052.
    Abstract:
    Tymidylate synthetase catalyzes the facile dehalogenation of 5-bromo-2'-deoxyuridylate (BrdUMP) and 5-iodo-2'-deoxyuridylate )IdUMP) to give 2'-deoxyuridylate (dUMP), the natural substrate of the enzyme. The reaction does not require folate cofactors and stoichiometrically consumes 2 equiv of thiol. In addition to dUMP, a minor product is formed during the debromination of BrdUMP which has been identified as a 5-alkylthio derivative formed by displacement of bromide ion by thiolate. The reaction has been found to proceed with a substantial alpha-secondary inverse tritium isotope effect (kT/kH = 1.212--1.258) with [2-14C,6-3H]-BrdUMP as the substrate. Similarly, an inverse tritiumisotope effect of 1.18 was observed in the nonenzymatic chemical counterpart of this reaction, the cysteine-promoted dehalogenation of [2-14C,6-3H]-5-bromo-2'-deoxyuridine. Previous evidence for the mechanism of action of this enzyme has rested largely on chemical model studies and on information obtained from its stoichiometric interaction with the inhibitor 5-fluoro-2'-deoxyuridylate. The magnitude of the secondary isotope effect during the enzymatic dehalogenation described here provides direct proof for nucleophilic catalysis and formation of 5,6-dihydroprimidine intermediates in a reaction catalyzed by thymidylate synthetase.
    [Abstract] [Full Text] [Related] [New Search]