These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A theory of the electric field-induced phase transition of phospholipid bilayers.
    Author: Sugár IP.
    Journal: Biochim Biophys Acta; 1979 Sep 04; 556(1):72-85. PubMed ID: 476121.
    Abstract:
    Improving the statistical mechanical model of Jacobs et al. (Jacobs, R.E., Hudson, B. and Andersen, H.C. (1975) Proc. Natl. Acad. Sci. U.S. 72, 3993--3997) we have constructed a model which describes not only the temperature but also the external field dependence of the membrane structure of phospholipid bilayers. In addition to the interactions between head groups, between hydrocarbon chains, and the internal conformational energy of the chains (which were considered in Jacobs' model), our model includes the energy of deformation and the field energy as well. By the aid of this model we can explain the phenomenon of dielectric breakdown, the non-linearity of current-voltage characteristics, and the mechanism of membrane elasticity. The free energy of the membrane, the average number of the gauche conformations in the hydrocarbon interior and at the membrane surface, gauche distribution along the chain, the membrane thickness, area and volume are calculated at different temperatures and voltages. The calculation also gives the temperature dependence of Young's modulus and that of the linear thermal expansion coefficient.
    [Abstract] [Full Text] [Related] [New Search]