These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of nucleotides on UDP-N-acetylglucosamine pyrophosphatase and N-acetylglucosaminyltransferase activities in microsomal membranes.
    Author: Mookerjea S.
    Journal: Can J Biochem; 1979 Jun; 57(6):557-65. PubMed ID: 476505.
    Abstract:
    Rat liver microsomes solubilized by incubating with lysolecithin or Triton X-100 showed very active UDP-N-acetylglucosamine pyrophosphatase activity leading to the hydrolysis of the substrate into N-acetylglucosamine-P and N-acetylglucosamine. ATP, GTP, CDPcholine, and CDPglucose exerted a considerable inhibitory effect on the solubilized membrane pyrophosphatase activity. CDPcholine and CDPglucose, in addition, appeared to stimulate the transfer of N-acetylglucosamine into endogenous and exogenous acceptor proteins. Evidence is also presented of an inhibitory effect of ATP (and to some extent GTP) on N-acetylglucosaminyltransferase activity. This inhibitory effect of ATP and GTP became clearly evident when the pyrophosphatase activity in the membranes was virtually eliminated in the presence of CDP-choline and CDPglucose. The effect of ATP and GTP on the solubilized membrane enzymes indicated that the inhibition of pyrophosphatase activity alone did not determine the rate of transfer of sugar to protein. The results also suggested that the UDP-N-acetylglucosamine pyrophosphatase and N-acetylglucosaminyltransferase activities were controlled independently and the effect of each nucleotide on these enzymes should, therefore, be carefully evaluated to understood its role in glycopolymer biosynthesis. Also, a possible role of choline and its derivatives in glycoprotein synthesis is discussed.
    [Abstract] [Full Text] [Related] [New Search]