These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cleavage of malyl-Coenzyme A into acetyl-Coenzyme A and glyoxylate by Pseudomonas AM1 and other C1-unit-utilizing bacteria. Author: Salem AR, Hacking AJ, Quayle JR. Journal: Biochem J; 1973 Sep; 136(1):89-96. PubMed ID: 4772632. Abstract: 1. Malyl-CoA lyase was found in high activity in extracts of Pseudomonas AM1, Pseudomonas MA, Pseudomonas MS, Hyphomicrobium X and Methylosinus trichosporium. 2. The enzyme cleaves (2S)-malyl-CoA into equimolar amounts of acetyl-CoA and glyoxylate in the presence of Mg(2+). 3. The specific activity of malyl-CoA lyase was several-fold higher in Pseudomonas AM1 when grown on C(1) compounds than when grown on C(2), C(3) or C(4) compounds. This suggests that the enzyme plays a specially important role in C(1) metabolism. 4. It is suggested that its role in C(1) metabolism, in organisms utilizing the serine pathway, is to provide the glyoxylate necessary to sustain operation of this pathway. 5. The activity of malyl-CoA lyase in extracts of Pseudomonas MA, Pseudomonas MS and Hyphomicrobium X is 27-50 times higher than the activity of ATP- and CoA-dependent cleavage of malate, suggesting that the latter activity may be due to coupling of two enzymes, malate thiokinase and malyl-CoA lyase. 6. Methane-grown Pseudomonas methanica and Methylococcus capsulatus, which are not known to use the serine pathway, possess appreciable amounts of malyl-CoA lyase. Instead of being used primarily for carbon assimilation, the enzyme may here serve as a route to glycine during biosynthesis of purines and proteins.[Abstract] [Full Text] [Related] [New Search]