These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cyclic variation of potassium conductance in a burst-generating neurone in Aplysia. Author: Junge D, Stephens CL. Journal: J Physiol; 1973 Nov; 235(1):155-81. PubMed ID: 4778133. Abstract: 1. The hyperpolarization between bursts in the R 15 cell of Aplysia is accompanied by an increase in membrane slope conductance.2. The post-burst hyperpolarization can be observed with ouabain, lithium, or potassium-free solution if artificial inward current is applied. The hyperpolarization can be observed with dinitrophenol or cooling to 10 degrees C, with no injected current. Thus, the hyperpolarization apparently is not due to the cyclic activity of an electrogenic pump.3. A reversal potential for the post-burst hyperpolarization can be demonstrated by passage of inward current during the inter-burst period. The reversal of direction of the potential depends on recent occurrence of a burst.4. The reversal potential varies with external potassium concentration, but not with chloride or sodium.5. The post-burst hyperpolarization is not blocked by external tetraethylammonium at a concentration which greatly prolongs the action potentials.6. During the onset of spike blockage by, and recovery from, calcium-free+tetrodotoxin saline, the bursts of action potentials appear to be driven by endogenous waves of membrane potential.7. The hyperpolarizing phase of the waves in calcium-free+tetrodotoxin medium is accompanied by an increased slope conductance.8. A reversal potential can be demonstrated for the hyperpolarization following a wave in calcium-free+tetrodotoxin medium by applying inward current during the interwave period.9. The waves in calcium-free+tetrodotoxin medium are blocked by ouabain but can be reinstated by artificial hyperpolarization.10. The post-burst hyperpolarization and the post-wave hyperpolarization appear to result from a periodic increase in membrane conductance, primarily to potassium ions.[Abstract] [Full Text] [Related] [New Search]