These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: ATP-induced endocytosis in human erythrocyte ghosts. Characterization of the process and isolation of the endocytosed vesicles. Author: Birchmeier W, Lanz JH, Winterhalter KH, Conrad MJ. Journal: J Biol Chem; 1979 Sep 25; 254(18):9298-304. PubMed ID: 479196. Abstract: ATP-induced endocytosis in human erythrocyte ghosts has been studied, and a procedure for the isolation of the endocytotic vesicles is described. Under isotonic conditions and 37 degrees C, optimal endocytosis occurs with concentrations of 4 to 10 mM MgATP. Within 30 min, up to 45% of the membrane is removed from the surface and converted into sealed inside-out vesicles. Local anesthetics, such as chlorpromazine, potentiate ATP-induced endocytosis in ghosts. Forcing cells containing endocytotic vesicles through a hypodermic needle leads to the exclusive fragmentation of the outermost plasma membrane. The endocytosed vesicles can then be separated from these fragments by centrifugation on a gradient of dextran T70. Biochemical analyses indicate that endocytotic vesicles contain full complements of the major membrane proteins (i.e. also spectrin and actin), common phospholipids, fatty acids, and cholesterol. Furthermore, they exhibit a fully intact spectrin component 2 phosphorylation machinery. In contrast, MgATPase activity is largely excluded from these vesicles. The novel inside-out vesicles described have properties different from those of previously analyzed fragments of the erythrocyte membrane. They will permit a detailed study of a native spectrin-actin network now exposed to the outside.[Abstract] [Full Text] [Related] [New Search]