These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanism and stereochemistry of enzymic reactions involved in porphyrin biosynthesis. Author: Akhtar M, Abboud MM, Barnard G, Jordan P, Zaman Z. Journal: Philos Trans R Soc Lond B Biol Sci; 1976 Feb 05; 273(924):117-36. PubMed ID: 4833. Abstract: 5-Aminolaevulinate synthetase cataylses the condensation of glycine and succinyl-CoA to give 5-aminolaevulinic acid. At least two broad pathways may be considered for the initial C--C bond forming step in the reaction. In pathway A the Schiff base of glycine and enzyme bound pyridoxal phosphate (a) undergoes decarboxylation to give the carbanion (b) which then condenses with succinyl-CoA with the retention of both the original C2 hydrogen atoms of glycine. In pathway B, loss of a C2 hydrogen atom gives another type of carbanion (c) that reacts with succinyl-CoA. Evidence has been presented to show that the initial C--C bond forming event occurs via pathway B which involves the removal of the pro R hydrogen atom of glycine. Subsequent mechanistic and stereochemical events occurring at the carbon atom destined to become C5 of 5-aminolaevulinate have also been delineated.(Carticle) Several mechanistic alternatices for the formation of the two vinyl groups of haem from the propionate residues of the precursor, coproporphyrinogen III, have been examined. (see article). It is shown that during the biosynthesis both the hydrogen atoms resident at the alpha positions of the propionate side chains remain undisturbed thus eliminating mechanisms which predict the involvement of acrylic acid intermediates. Biosynthetic experiments performed with precursors containing stereospecific labels have shown that the two vinyl groups of haem are formed through the loss of pro S hydrogen atoms from the beta-positions of the propionate side chains. In the light of these results, three related mechanisms for the conversion, propionate leads to vinyl, have been considered. In order to study the mechanism of porphyrinogen carboxy-lyase reaction, stereo-specifically deuterated, tritiated-succinate was incorporated into the acetate residues of uroporphyrinogen III which on decarboxylation generated asymmetric methyl groups in coproporphyrinogen III and then in haem. Degradation of the latter yielded chiral acetate deriving from C and D rings of haem. Configurational analysis of this derivate acetate shows that the carboxy-lyase reaction proceeds with a retention of configuration.[Abstract] [Full Text] [Related] [New Search]