These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A comparison between the discharges of human nociceptive nerve fibres and the subject's ratings of his sensations.
    Author: Gybels J, Handwerker HO, Van Hees J.
    Journal: J Physiol; 1979 Jul; 292():193-206. PubMed ID: 490345.
    Abstract:
    1. Impulses in cutaneous nerve fibres were recorded percutaneously with tungsten micro-electrodes from the superficial radial nerve of adult human subjects. 2. Eight units studied had conduction velocities below 1.5 m/sec, and thus belong to the class of C fibres. On the basis of their responsiveness to mechanical and to thermal stimuli the units were classified as 'polymodal nociceptors'. 3. Units were tested with 12 sec heat pulses starting from a base line temperature of 43.0-43.5 degrees C. Heat stimuli reaching three different maximal levels were applied in randomized order, the subjects being blind with respect to stimulus size. Each of the eight units studied was tested with more tha 20 stimuli and with four of them were 80-125 stimulus repetitions. 4. After each stimulus the subjects had to rate his sensations on a six-point rating scale extending from 'just noticeable' to 'very hot, painful'. 5. Discrimination between the three stimulus levels by the integtated spike discharges and by the ratings of the subject was compared using the P(A) measure of the Signal Detection Theory. It was found that both the neurophysiological and the psychophysical measurements provided about equal discrimination. 6. In addition it has been found that spike discharges and ratings share a common variance beyond their common dependence on the stimulus level. Among the factors contributing to this interdependence a 'temporal position effect' was the most significant. 7. In spite of this interdependence between discharge rates and subjective ratings, the latter gave a better estimation of the stimulus size than of the discharge rates of the individual C fibre under study. 8. It was concluded that the polymodal C-nociceptors might be instrumental for the quantitative aspects of heat pain sensation. The hypothesis was derived from the present results that, under the conditions of cour experiments, the loss of information in the course of central processing might be about equal to the gain by the parallel processing in a population of nociceptors excited by a stimulus.
    [Abstract] [Full Text] [Related] [New Search]