These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differentiation of Clostridium botulinum types A, B, and E by pyrolysis-gas-liquid chromatography.
    Author: Cone RD, Lechowich RV.
    Journal: Appl Microbiol; 1970 Jan; 19(1):138-45. PubMed ID: 4905944.
    Abstract:
    Vegetative cells and spores of 10 strains of Clostridium botulinum representing types A, B, and E were grown in Trypticase-peptone-sucrose-yeast extract (TPSY) medium. Five type E strains were also grown in Multipeptone-sucrose-Nutramino acids (MSN) medium. Lyophilized samples were subjected to pyrolysis-gas-liquid chromatography (PGLC) analysis, and the resulting pyrograms were examined for variations in elution patterns between spores and vegetative cells of types A, B, and E grown in the TPSY medium and spores and vegetative cells of type E grown in the TPSY medium and spores and vegetative cells of type E grown in TPSY and MSN media. Growth and toxin production of all 10 strains of C. botulinum were investigated by using a modified dialysis sac culture technique. The dialysate supernatant fluid (DSF) obtained after centrifugation of the 5-day-old cultures from the dialysate was also subjected to PGLC analysis. Control samples consisting of (i) noninoculated DSF, (ii) noninoculated DSF plus partially purified toxin, and (iii) 1.0 mg of partially purified toxin were also analyzed by PGLC. Differences between pyrograms of cultures were suitable for positive identification at the type level but not at the strain level. Pyrograms permitting differentiation were also obtained between spores and vegetative cells as well as between the same cultures grown in different media. The dialysis sac technique was useful in detecting growth but not toxin production of C. botulinum.
    [Abstract] [Full Text] [Related] [New Search]