These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stimulation by HCO3- of Na+ transport in rabbit gallbladder.
    Author: Cremaschi D, Hénin S, Meyer G.
    Journal: J Membr Biol; 1979 May 21; 47(2):145-70. PubMed ID: 490620.
    Abstract:
    Bicarbonate presence in the bathing media doubles Na+ and fluid transepithelial transport and in parallel significantly increases Na+ and Cl- intracellular concentrations and contents, decreases K+ cell concentration without changing its amount, and causes a large cell swelling. Na+ and Cl- lumen-to-cell influxes are significantly enhanced, Na+ more so than Cl-. The stimulation does not raise any immediate change in luminal membrane potential and cannot be due to a HCO3(-)-ATPase in the brush border. The stimulation goes together with a large increase in a Na+-dependent H+ secretion into the lumen. All of these data suggests that HCO3- both activates Na+--Cl- cotransport and H+--Na+ countertransport at the luminal barrier. Thiocyanate inhibits Na+ and fluid transepithelial transport without affecting H+ secretion and HCO3(-)-dependent Na+ influx. It reduces Na+ and Cl- conentrations and contents, increases the same parameters for K+, causes a cell shrinking, and abolishes the lumen-to-cell Cl- influx. It enters the cell and is accumulated in the cytoplasm with a process which is Na+-dependent and HCO3(-)-activated. Thus SCN- is likely to compete for the Cl- site on the cotransport carrier and to be slowly transferred by the cotransport system itself.
    [Abstract] [Full Text] [Related] [New Search]