These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Isolation, characterization, and genetic analysis of mutator genes in Escherichia coli B and K-12.
    Author: Liberfarb RM, Bryson V.
    Journal: J Bacteriol; 1970 Oct; 104(1):363-75. PubMed ID: 4919752.
    Abstract:
    Twenty-one Mut mutants were obtained from Escherichia coli B (B/UV) and K-12 (JC355) after treatment with mutagens. These Mut strains are characterized by rates of mutation to streptomycin resistance and T-phase resistance which are significantly higher than the parental (Mut(+)) rates. Mutator genes in 12 strains have been mapped at three locations on the E. coli chromosome: one close to the leu locus; five close to the purA locus; and six close to cysC. In addition, eight mutator strains derived from E. coli B/UV are still unmapped. Some effort was made to deduce the mode of action of the mutator genes. These isolates have been examined for possible defects in deoxyribonucleic acid repair mechanisms (dark repair of ultraviolet damage, host-cell reactivation, recombination ability, repair of mitomycin C damage). By using transductional analysis, it was found that the ultraviolet sensitivity of NTG119 and its mutator property results from two separate but closely linked mutations. PurA(+) transductants that receive mut from NTG119 or NTG35 are all more sensitive to mitomycin C than is the PurA recipient. Unless transduction selects for sensitivity, a probable interpretation is that defective repair of mitomycin C-induced damage is related to the mode of action of mut in these transductants and the donor. Abnormal purine synthesis may be involved in the mutability of some strains with cotransduction of the mutator properly and purA (100% cotransduction for NTG119). Three mutators are recombination-deficient and may have a defective step in recombination repair. One maps near three rec genes close to cysC.
    [Abstract] [Full Text] [Related] [New Search]