These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electron transport reactions in grana preparations from spinach chloroplasts. Author: Fork DC. Journal: Biophys J; 1972 Jul; 12(7):909-21. PubMed ID: 5037343. Abstract: Fraction 2 (grana-stack) particles prepared with the French press showed absorbance changes, at room temperature and with sodium ascorbate and methyl-viologen, that were produced by the oxidation of cytochrome b-559. This oxidation was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and sensitized by system II of photosynthesis. The oxidation is too slow to account for the rates of the Hill reaction that have been observed with nicotinamide-adenine dinucleotide phosphate (NADP(+)). It appears that this cytochrome is not functioning in the main pathway of electron transport. In the presence of 2,3,5,6-tetramethyl-p-phenylene-diamine (DAD) and ascorbate, light-induced oxidation of cytochrome f took place within 3 msec (or faster) in the grana-stack particles. Treatment with the detergent Triton X-100 disrupted this rapid cytochrome f oxidation as well as the oxidation of cytochrome b-559. Subsequent plastocyanin addition did not restore the rapid oxidation of cytochrome f (nor of cytochrome b-559) but only slow changes of cytochrome f. In view of the fact that these particles contain almost no plastocyanin, it is unlikely that plastocyanin functions in electron transport between cytochrome f and P-700 in the particles derived from the grana-stack regions of the chloroplast.[Abstract] [Full Text] [Related] [New Search]