These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Aminoacyltransferase I-catalysed binding of phenylalanyl-transfer ribonucleic acid to muscle ribosomes from normal and diabetic rats. Author: Leader DP, Wool IG, Castles JJ. Journal: Biochem J; 1971 Sep; 124(3):537-41. PubMed ID: 5135240. Abstract: The aminoacyltransferase I-catalysed binding of phenylalanyl-tRNA (unfractionated Escherichia coli B tRNA acylated with radioactive phenylalanine and 19 non-radioactive amino acids) to skeletal-muscle ribosomes from diabetic rats was less than that to ribosomes from normal rats when the Mg(2+) concentration was low (7.5mm); whereas just the reverse was true when the concentration of the cation was higher (15mm). Thus the Mg(2+) dependency of aminoacyltransferase I-catalysed binding of phenylalanyl-tRNA to ribosomes from normal and diabetic rats paralleled the effect of Mg(2+) concentration on synthesis of polyphenylalanine reported before. During incubation at 7.5mm-Mg(2+) phenylalanyl-tRNA was bound only to ribosomes bearing nascent peptidyl-tRNA. There are fewer such ribosomes in a preparation from the muscle of diabetic animals because diabetic animals synthesize less protein in vivo. Thus the difference in polyphenylalanine synthesis in vitro is adequately explained by the difference in enzyme-catalysed binding of phenylalanyl-tRNA to ribosomes, however, the basis of the difference in protein synthesis in vivo is still unknown.[Abstract] [Full Text] [Related] [New Search]