These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of external sodium and cell membrane potential on intracellular chloride activity in gallbladder epithelium. Author: Reuss L, Grady TP. Journal: J Membr Biol; 1979 Dec 12; 51(1):15-31. PubMed ID: 522127. Abstract: Conventional and Cl-selective liquid ion-exchanger intracellular microelectrodes were employed to study the effects of extracellular ionic substitutions on intracellular Cl activity (aCli) in Necturus gallbladder epithelium. As shown previously (Reuss, L., Weinman, S.A., 1979; J. Membrane Biol. 49:345), when the tissue was exposed to NaCl-Ringer on both sides aCli was about 30 mM, i.e., much higher than the activity predicted from equilibrium distribution (aCleq) across either membrane (5--9 mM). Removal of Cl from the apical side caused a reversible decrease of aCli towards the equilibrium value across the basolateral membrane. A new steady-state aCli was reached in about 10 min. Removal of Na from the mucosal medium or from both media also caused reversible decreases of aCli when Li, choline, tetramethylammonium or N-methyl-D-glucamine (NMDG) were employed to replace Na. During bilateral Na substitutions with choline the cells depolarized significantly. However, no change of cell potential was observed when NMDG was employed as Na substitute. Na replacements with choline or NMDG on the serosal side only did not change aCli. When K substituted for mucosal Na, the cells depolarized and aCli rose significantly. Combinations of K for Na and Cl for SO4 substitutions showed that net Cl entry during cell depolarization can take place across either membrane. The increase of aCli in depolarized cells exposed to K2SO4-Ringer on the mucosal side indicates that the basolateral membrane Cl permeability (PCl) increased. These results support the hypothesis that NaCl entry at the apical membrane occurs by an electroneutral mechanism, driven by the Na electrochemical gradient. In addition, we suggest that Cl entry during cell depolarization is downhill and involves an increase of basolateral membrane PCl.[Abstract] [Full Text] [Related] [New Search]