These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of procainamide on transmembrane action potentials in guinea-pig papillary muscles as affected by external potassium concentration. Author: Sada H, Kojima M, Ban T. Journal: Naunyn Schmiedebergs Arch Pharmacol; 1979 Nov; 309(2):179-90. PubMed ID: 522903. Abstract: Effects of procainamide (PA), 0.18, 0.37 and 0.74 mmol/l, on the transmembrane potential were studied in isolated guinea-pig papillary muscles, superfused with modified Tyrode's solution (external K concentration, [K]0 = 5.4 mmol/l) at the basic driving rate of 1 Hz. PA, at 0.37 mmol/l, significantly reduced the maximum rate of rise of action potential (Vmax) with no change in the resting potential. When 2.7 mmol/l [K]0 of the superfusate was exchanged for 15 mmol/l [K]0 solution a decrease in Vmax induced by 0.37 mmol/l PA became more prominent with decrease in resting potential. The reduction of Vmax at steady state was less at lower driving rates (0.25 and 0.5 Hz) and more at higher driving rates (2-5 Hz) than at 1 Hz in 2.7, 5.4 and 10.0 mmol/l [K]0 solution. Such changes were enhanced concentration-dependently by PA at 5.4 mmol/l [K]0. Also, the changes became more significant with an increase in [K]0 from 2.7 mmol/l to 5.4 mmol/l and then to 10.0 mmol/l. The recovery process of Vmax proceeded with two components. The time course of the slow component seen in the Vmax of the first response after interruption of basic driving stimulation at 1 Hz, followed an approximate monoexponential function. The time constants were 6.3, 4.4 and 5.8 s in the presence of 0.18, 0.37 and 0.74 mmol/l PA at 5.4 mmol/l [K]0 and 3.4 and 3.7 s both in the presence of 0.37 mmol/l PA at 2.7 and 10.0 mmol/l [K]0. Vmax values after 30 or 60 s interruption of stimulation were 80-92% of the predrug Vmax value at 1 Hz. The time constants of the first component, estimated by the peeling-off methods at the driving rate of 0.1 Hz, were 11, 31 and 5-22 ms in the presence of 0.37 mmol/l at 5.4, 10.0 and 2.7 mmol/l [K]0 and did not differ significantly from the time constants in control preparations. The results were found to be consistent, to a certain extent, with the model proposed by Hondeghem and Katzung (1977).[Abstract] [Full Text] [Related] [New Search]