These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effect of carbon dioxide on the tonic and the rhythmic discharges of expiratory bulbospinal neurones. Author: Bainton CR, Kirkwood PA. Journal: J Physiol; 1979 Nov; 296():291-314. PubMed ID: 529096. Abstract: 1. Extracellular micro-electrodes were used to measure the responses of expiratory bulbospinal neurones to CO2 in anaesthetized, paralyzed cats, ventilated with O2. Simultaneous measurements were made of phrenic nerve and intercostal nerve filament discharges. 2. Hypocapnia produced tonic activity in some of the expiratory neurones and in expiratory filaments but rendered the phrenic and inspiratory filaments silent. 3. A graded excitatory effect of CO2 on tonic activity of both the neurones and the filaments was seen which progressed smoothly and continuously to rhythmic activity as CO2 was increased and to zero as CO2 was decreased. 4. Increases in blood pressure produced effects which were opposite to those produced by CO2, and which had a faster time course. 5. The CO2 response curves of those units showing tonic activity were indistinguishable from the CO2 response curves of those which did not. 6. A mid line lesion in the medulla interrupted inspiratory activity, converting activity of expiratory bulbospinal neurones from periodic to ionic firing patterns. 7. Following such lesions the CO2 threshold for rhythmic excitation of medullary neurones was elevated and the slopes of their CO2 response curves were reduced. 8. These findings fully confirm the hypothesis put forward by Bainton, Kirkwood & Sears (1978b) that bulbospinal respiratory neurones convey both tonic and rhythmic excitation to spinal respiratory motoneurones and that the rhythmic excitation of expiratory muscles derives from a period inhibition of expiratory bulbospinal neurones which are subjected to a tonic CO2 dependent excitation which is continuously variable over the physiological range.[Abstract] [Full Text] [Related] [New Search]