These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stability of beta-galactosidase messenger ribonucleic acid in Escherichia coli.
    Author: Ben-Hamida F, Schlessinger D.
    Journal: J Bacteriol; 1965 Dec; 90(6):1611-6. PubMed ID: 5322720.
    Abstract:
    Ben-Hamida, Fakher (Washington University School of Medicine, St. Louis, Mo.), and David Schlessinger. Stability of beta-galactosidase messenger ribonucleic acid in Escherichia coli. J. Bacteriol. 90:1611-1616. 1965.-Synthesis of beta-galactosidase stops within several minutes when preinduced, permeaseless cultures are diluted into medium containing 40 mug/ml of 5-fluorouracil (5-FU) but no inducer. However, if inducer (isopropylthiogalactoside) is left in the medium, enzyme formation in the presence of 5-FU continues for at least 11 min. Thus, inducer may increase the differential metabolic stability of the corresponding messenger ribonucleic acid (RNA; defined as the capacity to produce measurable enzyme) in inducible strains. However, such an interpretation requires that 5-FU rapidly arrest the further synthesis of messenger RNA competent to form active enzyme. C(14)-5-FU, like uracil, does appear to enter cells without measurable lag, saturating the pool of uracil nucleotides, and thereby the messenger RNA being formed, within several minutes. That 5-FU acts very quickly is also supported by the similar continuation of enzyme synthesis in the presence of inducer and antibiotics (actinomycin D and proflavine) which shut off all RNA synthesis, as well as by the response to 5-FU of enzyme synthesis in various constitutive mutants.
    [Abstract] [Full Text] [Related] [New Search]