These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The metabolism of chylomicron cholesteryl ester in rat liver. A combined radioautographic-electron microscopic and biochemical study.
    Author: Stein O, Stein Y, Goodman DS, Fidge NH.
    Journal: J Cell Biol; 1969 Dec; 43(3):410-31. PubMed ID: 5351399.
    Abstract:
    Chylomicrons containing labeled cholesterol, mainly (70%) present as cholesteryl ester, were injected intravenously into intact rats, and samples of liver were obtained 27-210 min later. Most (58-75%) of the injected label was recovered in the liver after 27-75 min. Hepatic uptake occurred without hydrolysis of the labeled cholesteryl ester. In separate experiments, in vitro perfusion of livers of similarly treated rats for 30-35 min washed out only 3-9% of the labeled sterol. Samples of liver and small intestine were prepared for electron microscopy with Aquon as the dehydrating agent. Good retention (70% or more) of labeled cholesterol and satisfactory preservation of ultrastructure were obtained. After 30 min, the radioautographic reaction was localized mainly over the region of the cell boundary of the parenchymal liver cells, with fewer grains being present over intracellular organelles. At later time intervals, when considerable hydrolysis of the labeled cholesteryl ester had occurred, the radioautographic reaction was more evenly distributed. Phagocytosed labeled lipid was seen in Kupffer cells after the larger lipid load; phagocytosis by parenchymal cells was not seen. In other experiments, cholesteryl ester hydrolase activity was found in all subcellular fractions, the microsome and plasma membrane fractions showing the highest activity per mg protein. The mechanism of cholesteryl ester transport into the liver cell may involve: (1) hydrolysis at the cell surface; or (2) slow entry of intact molecules followed by intracellular hydrolysis of the ester bond.
    [Abstract] [Full Text] [Related] [New Search]