These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The carnitine-independent oxidation of palmitate plus malate by moth flight-muscle mitochondria. Author: Stevenson E. Journal: Biochem J; 1968 Nov; 110(1):105-10. PubMed ID: 5722681. Abstract: Mitochondria isolated from the flight muscle of the southern armyworm moth, Prodenia eridania, can oxidize palmitate+malate very rapidly. Added carnitine had no effect on the rate of oxidation of palmitate+malate by flight-muscle mitochondria from two species of moths, and carnitine palmitoyltransferase could not be detected in Prodenia by direct assay. Palmitoylcarnitine was not oxidized by moth mitochondria, but when added in low concentrations it reversibly suppressed the oxidation of palmitate. The evidence indicates that carnitine is not involved in fatty acid degradation by moth flight muscle. Added thiols, including CoA, also suppressed palmitate+malate oxidation. An ATP-dependent fatty acyl-CoA synthetase is present in moth mitochondria.[Abstract] [Full Text] [Related] [New Search]