These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effect of N-bromosuccinimide on the sub-unit structure of acidin and its complexes with biotin.
    Author: Green NM, Ross ME.
    Journal: Biochem J; 1968 Nov; 110(1):59-66. PubMed ID: 5722693.
    Abstract:
    1. Each molecule of biotin bound to avidin protected four tryptophan residues from oxidation by N-bromosuccinimide, regardless of the occupancy of neighbouring binding sites in the four-sub-unit avidin molecule. 2. The oxidation products from avidin molecules in which some of the sites were occupied were separated on columns of Sephadex G-100. In the absence of biotin, oxidized avidin broke down into sub-units, which partly aggregated. When some of the sites were occupied by biotin, the only detectable products were completely oxidized avidin (sub-units and large aggregates) and unoxidized avidin-biotin complex (tetramer). Since the biotin-containing sub-units were randomly distributed before oxidation took place, they must have dissociated from the molecules containing oxidized sub-units and then reassociated to form the tetrameric avidin-biotin complex. 3. This reassociation still occurred in 3.5m-guanidinium chloride, which prevents the reassociation of unoccupied sub-units. During their brief existence in this medium, the sub-units of avidin-biotin complex were protected from oxidation by N-bromo-succinimide to the same extent as was the tetrameric complex. 4. It is concluded that sub-units of avidin-biotin complex do not readily lose their biotin, even in 3.5m-guanidinium chloride, and that monomeric biotin-binding species are probably present in solutions of avidin sub-units at guanidinium chloride concentrations between 3.0m and 3.5m.
    [Abstract] [Full Text] [Related] [New Search]