These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of phosphoenolpyruvate carboxylation in Acetobacter xylinum. Author: Benziman M. Journal: J Bacteriol; 1969 Jun; 98(3):1005-10. PubMed ID: 5788692. Abstract: Glucose-grown cells of Acetobacter xylinum oxidized acetate only when the reaction mixture was supplemented with catalytic quantities of glucose or intermediates of the citrate cycle. Extracts, prepared by sonic treatment, catalyzed the formation of oxalacetate when incubated with phosphoenolpyruvate (PEP) and bicarbonate. Oxalacetate was not formed in the presence of pyruvate plus adenosine triphosphate. The ability to promote carboxylation of PEP was lower in succinate-grown cells than in glucose-grown cells. PEP carboxylase, partially purified from extracts by ammonium sulfate fractionation, catalyzed the stoichiometric formation of oxalacetate and inorganic phosphate from PEP and bicarbonate. The enzyme was not affected by acetyl-coenzyme A or inorganic phosphate. It was inhibited by adenosine diphosphate in a manner competitive with PEP (K(1) = 1.3 mm) and by dicarboxylic acids of the citrate cycle; of these, succinate was the most potent inhibitor. It is suggested that the physiological role of PEP carboxylase in A. xylinum is to affect the net formation of C(4) acids from C(3) precursors, which are essential for the maintainance of the citrate cycle during growth on glucose. The relationship of PEP carboxylase to other enzyme systems metabolizing PEP and oxalacetate in A. xylinum is discussed.[Abstract] [Full Text] [Related] [New Search]