These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Asocainol, a new antiarrhythmic drug with natrium- and calcium-antagonistic effects on ventricular myocardium. Author: Späh F. Journal: J Cardiovasc Pharmacol; 1984; 6(6):1027-35. PubMed ID: 6084758. Abstract: In isolated guinea pig papillary muscles, asocainol, a new antiarrhythmic drug, and its optical isomers exert a concentration-dependent negative inotropic action that is due to an inhibitory influence on the slow Ca2+ influx. However, depression of contractility is always accompanied by marked alterations of normal Na+-carried action potentials; thus, overshoot and duration decline together with Na+-dependent upstroke velocity. These observations indicate that asocainol not only inhibits Ca2+ inflow, but interferes with the fast inward Na+ current. In partially depolarized ventricular muscle, asocainol lowers Ca2+-dependent contractile force as it reduces upstroke velocity, overshoot, and duration of Ca2+-mediated action potentials. Moreover, Mg2+-induced membrane activity is suppressed by asocainol. Ba2+-induced ventricular autorhythmicity, representing a model of a slow-channel-dependent ectopic pacemaker, is abolished by asocainol. We conclude that asocainol exerts mixed Na+-, Ca2+-, and Mg2+-antagonistic effects in mammalian ventricular myocardium. Thus, asocainol keeps an intermediate position between specific Ca2+ antagonists (verapamil) and predominantly Na+-antagonistic drugs such as certain local anesthetics. On the basis of this dual inhibitory action on both transmembrane Na+ and Ca2+ conductivities, it is easily understood that asocainol is a rather efficient antiarrhythmic agent that exerts in combination the particular effects of both class-I and class-IV antiarrhythmic drugs.[Abstract] [Full Text] [Related] [New Search]