These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Competitive cAMP antagonists for cAMP-receptor proteins. Author: Van Haastert PJ, Van Driel R, Jastorff B, Baraniak J, Stec WJ, De Wit RJ. Journal: J Biol Chem; 1984 Aug 25; 259(16):10020-4. PubMed ID: 6088478. Abstract: The two exocyclic oxygen atoms at phosphorus of cAMP have been replaced by a sulfur atom or by a dimethylamino group. These substitutions introduce chirality at the phosphorus atom; therefore, two diastereoisomers are known for each derivative: (SP)-cAMPS, (RP)-cAMPS, (SP)-cAMPN(CH3)2, and RP-cAMPN(CH3)2. We have investigated the agonistic and antagonistic activities of these compounds in four cAMP-dependent reactions: activation of the cellular slime mold Dictyostelium discoideum via its cell surface cAMP receptor, and phosphorylation by cAMP-dependent protein kinases type I, type II (both mammalian enzymes), and type D (derived from D. discoideum). The results show that 1) the compounds (SP)-cAMPS and (SP)-cAMPN(CH3)2 are (mostly full) agonists for the four proteins. Half-maximal activation is at micromolar concentrations (0.8-7 microM). 2) (RP)-cAMPS is a full antagonist for the cell surface receptor and protein kinases type I and II, with apparent inhibition constants between 0.8 and 8 microM. This compound is a partial agonist for protein kinase type D, where it induces maximally 50% activation of the enzyme if compared with cAMP. 3) (RP)-cAMPN(CH3)2 is a full antagonist for the cell surface receptor, and for protein kinase type II. This compound is a partial agonist for protein kinase type I (at least 50% activation if compared with cAMP), and inactive for protein kinase type D. This derivative is at least 25-fold less active as an antagonist than (RP)-cAMPS. 4) The activity of mixtures of different concentrations of the antagonist (RP)-cAMPS with different concentrations of cAMP reveals that the compound is a competitive antagonist of cAMP at micromolar concentrations.[Abstract] [Full Text] [Related] [New Search]